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ABSTRACT

Timbre spaces have been used in music perception to study the
perceptual relationships between instruments based on dissimilar-
ity ratings. However, these spaces do not generalize, need to be
reconstructed for each novel example and are not continuous, pre-
venting audio synthesis. In parallel, generative models have aimed
to provide methods for synthesizing novel timbres. However, these
systems do not provide an explicit control structure, nor do they
provide an understanding of their inner workings and are usually
not related to any perceptually relevant information.
Here, we show that Variational Auto-Encoders (VAE) can alleviate
all of these limitations by constructing variational generative tim-
bre spaces. To do so, we adapt VAEs to create a generative latent
space, while using perceptual ratings from timbre studies to reg-
ularize the organization of this space. The resulting space allows
to analyze novel instruments, while being able to synthesize audio
from any point of this space. We introduce a specific regularization
allowing to directly enforce given perceptual constraints or simi-
larity ratings onto these spaces. We compare the resulting space to
existing timbre spaces and show that they provide almost similar
distance relationships. We evaluate several spectral transforms as
input and show that the Non-Stationary Gabor Transform (NSGT)
provides the highest correlation to timbre spaces and the best qual-
ity of synthesis. Furthermore, we show that these spaces can gen-
eralize to novel instruments and can generate any path between in-
struments to understand their timbre relationships. As these spaces
are continuous, we study how the traditional acoustic descriptors
behave along the latent dimensions. We show that even though
descriptors have an overall non-linear topology, they follow a lo-
cally smooth evolution. Based on this, we introduce a method for
descriptor-based synthesis and show that we can control the de-
scriptors of an instrument while keeping its timbre structure.

1. INTRODUCTION

For the past decades, music perception research has tried to under-
stand the mechanisms behind the perception of instrumental tim-
bre. Timbre is the set of properties that allows to distinguish two
instruments that play the same note at the same intensity. To do so,
several studies [1] collected human dissimilarity ratings between
pairs of audio samples inside a set of instruments. These ratings
are then organized by applying MultiDimensional Scaling (MDS),
leading to timbre spaces, which exhibits the perceptual similari-
ties between different instruments. By analyzing the dimensions
of resulting spaces, the experimenters then tried to correlate audio
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descriptors to the perception of timbre [2]. Although these spaces
provided interesting avenues of analysis, they are inherently lim-
ited by the fact that ordination techniques (such as MDS) produce
a fixed discrete space, which has to be recomputed entirely for any
new sample. Therefore, these spaces do not generalize to novel
examples and are not continuous, precluding audio synthesis to
understand the overall perceptual topology of these spaces.

In parallel, recent developments in audio synthesis using gen-
erative models has seen great improvements with the introduction
of approaches such as the WaveNet [3] and SampleRNN [4] archi-
tectures. These allow to generate novel high-quality audio match-
ing the properties of the corpus they have been trained on. How-
ever, these models give little cue and control over the signal output
or the hidden features it results from. More recently, NSynth [5]
has been proposed to generate instrumental notes by allowing to
morph between specific instruments. However, these models re-
main highly complex, requiring very large number of parameters,
long training times and a large number of examples. Amongst
recent generative models, another key proposal is the Variational
Auto-Encoder (VAE) [6]. In these, encoder and decoder networks
are jointly trained through the construction of a latent space, that
allow both analysis and generation. VAEs address the limitations
of control and analysis through this latent space, while remaining
simple and fast to learn with a small set of examples. Further-
more, VAEs seem able to disentangle underlying variation factors
by learning independent latent variables accounting for distinct
generative processes [7]. However, the dimensions of these latent
spaces are learned in an unsupervised way. Therefore, they are not
directly related to perceptual properties, which might hamper their
understandability or their use for audio analysis and synthesis.

Here, we show that we can bridge timbre perception analy-
sis and perceptually-relevant audio synthesis by regularizing the
learning of VAE latent spaces so that they match the perceptual
distances collected from timbre studies. Our overall approach is
depicted in Figure 1. First, we adapt the VAE to analyze musical
audio content, by comparing the use of different invertible spec-
tral transforms as input to the learning. We show that, amongst
the Short-Term Fourier Transform (STFT), Discrete Cosine Trans-
form (DCT) and the Non-Stationary Gabor Transform (NSGT),
the NSGT provides the best reconstruction abilities and regular-
ization performances. By training this model on a small instru-
mental database, this already provides a generative model with an
interesting latent space, able to synthesize novel instrumental tim-
bres. Then, we introduce a regularization to the learning objective
similar to the t-Stochastic Neighbors Embedding (t-SNE) [8], aim-
ing to enforce that the latent space exhibits the same distances be-
tween instruments as those found in timbre studies. To do so, we
build a model of perceptual relationships by analyzing dissimilar-
ity ratings from five independent timbre studies [9, 10, 11, 12, 13].
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Figure 1: (Left) VAEs model audio samples x by learning an en-
coder qφ(z | x) which maps them to a Gaussian N (µ(x), σ(x))
inside a latent space z. The decoder pθ(x | z) samples from this
Gaussian to generate a reconstruction x̃. (Right) Perception studies
use similarity ratings to construct timbre spaces exhibiting percep-
tual distances between instruments. Here, we develop a regulariza-
tionR(z, T ) enforcing that the variational model finds a topology
of latent space z that matches the topology of the timbre space T .

We show that perceptually-regularized latent spaces are simultane-
ously coherent with perceptual ratings, while being able to synthe-
size high-quality audio distributions. Hence, we drive the learning
of latent spaces to match the topology of given target spaces.

We demonstrate that these spaces can be used directly for gen-
erating novel audio content, by analyzing their reconstruction qual-
ity on a test dataset. Furthermore, we show that paths in the latent
space between provide sound synthesis with continuous evolutions
of timbre perception. We also show that these spaces generalize to
novel samples, by encoding a set of instruments that were not part
of the training set. Therefore, the spaces could be used to predict
the perceptual similarities of novel instruments. Finally, we study
how traditional audio descriptors are organized along the latent
dimensions, by sampling and generating audio samples on a fine
equally-spaced grid across space. We show that even though de-
scriptors behave in a non-linear way across space, they still follow
a locally smooth evolution. Based on this smoothness property, we
introduce a method for descriptor-based path synthesis. We show
that we can modify an instrumental distribution so that it matches
a given target evolution of audio descriptors, while remaining per-
ceptually smooth. The source code, audio examples and additional
animations are available on a supporting repository 1.

2. STATE-OF-ART

2.1. Variational auto-encoders

Generative models are a flourishing class of machine learning ap-
proaches, which aim to find the underlying probability distribution

1https://github.com/acids-ircam/
variational-timbre

of the data p(x) [14]. Formally, based on a set of examples in
a high-dimensional space x ∈ Rdx , we assume that these follow
an unknown probability distribution p (x). Furthermore, we con-
sider a set of latent variables defined in a lower-dimensional space
z ∈ Rdz (dz � dx). These latent variables help govern the gener-
ation of the data and enhance the expressivity of the model. Thus,
the complete model is defined by the joint probability distribution
p(x, z) = p(x | z)p(z). We could find p(x) by marginalizing z
from the joint probability. However, for most models, this integral
can not be found in closed form.

For decades, the dominant paradigm for approximating p(x)
has been sampling methods [15]. However, the quality of this ap-
proximation depends on the number of sampling operations, which
might be extremely large before we have an accurate estimate. Re-
cently, variational inference (VI) has been proposed to solve this
problem through optimization rather than sampling. VI assumes
that if the distribution is too complex to find, we could find a sim-
pler approximate distribution that still models the data, while try-
ing to minimize its difference to the real distribution. Formally, VI
specifies a familyQ of approximate densities, where each member
q(z |x) ∈ Q is a candidate approximation to the exact conditional
p (z | x). Hence, the inference problem can be transformed into an
optimization problem by minimizing the Kullback-Leibler (KL)
divergence between the approximation and the original density

q∗(z | x) = arg min
q(z | x)∈Q

DKL
[
q (z | x) ‖ p (z | x)

]
(1)

The complexity of the family Q will both determine the quality
of the approximation, but also the complexity of this optimization.
Hence, the major issue of VI is to choose Q to be flexible enough
to closely approximate p (z | x), while being simple enough to al-
low efficient optimization. Now, if we expand the KL divergence
that we need to minimize and rely on Bayes’ rule to replace p(z|x),
we obtain the following expression

DKL
[
q(z | x) ‖ p(z | x)

]
= Eq(z)

[
log q(z | x)− log p(x | z)

− log p(z) + log p(x)
]

(2)

Noting that the expectation is over q(z) and that p(x) does not
depend on it, we then observe that the remaining equation can be
rewritten as another KL divergence leading to a new formulation

log p(x)−DKL
[
q(z | x) ‖ p(z | x)

]
=

Ez

[
log p(x | z)

]
−DKL

[
q(z | x) ‖ p(z)

]
(3)

This formulation describes the quantity that we want to maximize
log p(x) minus the error we make by using an approximate q in-
stead of p. Therefore, we can optimize this alternative objective,
called the evidence lower bound (ELBO) as we have

log p(x) = KL(q(z) ‖ p(z | x)) + ELBO(q). (4)

and the KL is non-negative, so log p(x) ≥ ELBO(q),∀q(z).
Now, to optimize this objective, we will rely on parametric dis-
tributions qφ(z) with φ ∈ Φ and pθ(z) with θ ∈ Θ. Therefore,
optimizing our generative model will amount to optimize the pa-
rameters

{
θ, φ
}

of these distributions

L(θ, φ) = Eqφ(z)
[

log pθ(x|z)
]
−DKL

[
qφ(z|x) ‖ pθ(z)

]
(5)

We can see that this equation involves qφ(z | x) which encodes
the data x into the latent representation z and a decoder p(x | z),
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which allows to generate a data x given a latent configuration z.
Hence, this whole structure defines the Variational Auto-Encoder
(VAE), which is depicted in Figure 1 (Left).

The VAE objective can be interpreted intuitively. The first
term increases the likelihood of the data generated given a configu-
ration of the latent, which amounts to minimize the reconstruction
error. The second term represents the error made by using a sim-
pler distribution qφ(z | x) rather than the true distribution pθ(z).
Therefore, this allows to regularize the choice of approximation q
so that it remains close to the true posterior distribution.

Lθ,φ = Eqφ(z)
[

log pθ(x|z)
]︸ ︷︷ ︸

reconstruction

−β ·DKL
[
qφ(z|x) ‖ pθ(z)

]︸ ︷︷ ︸
regularization

(6)

The first term can be optimized through a usual maximum likeli-
hood estimation, while the second term requires that we define the
prior p(z). While the easiest choice is to choose p(z) ∼ N (0, 1),
it also adds the benefit that this term has a simple closed solution
for computing the optimization, as detailed in [6]. Here we intro-
duced a weight β to the KL divergence, which leads to the β-VAE
formulation [7]. This has been shown to improve the capacity of
the model to disentangle factors of variations in the data. How-
ever, it has later been shown that an appropriate way to handle this
parameter was to perform warm-up [16], where the β parameter is
linearly increased in the first epochs of training.

Finally, we need to select a family of variational densities
Q. One of the most widespread choice is the mean-field varia-
tional family where latent variables are independent and are each
parametrized by a distinct variational parameter

q(z) =

m∏
j=1

qj(zj) (7)

Therefore, each dimension of the latent space will be governed
by an independent Gaussian distribution with its own mean and
variance depending on the input data qj(zj) = N (µj(x),Σj(x)).

VAEs are powerful representation learning frameworks, while
remaining simple and fast to learn without requiring large sets of
examples [16]. Their potential for audio applications have been
only scarcely investigated yet and mostly in topics related to speech
processing such as blind source separation [17] and speech trans-
formation [18]. However, to the best of our knowledge, the use of
VAE and their latent spaces to perform musical audio analysis and
generation has yet to be investigated.

2.2. Timbre spaces and auditory perception

For several decades, music perception research has tried to under-
stand the mechanisms leading to the perception of timbre. Sev-
eral studies have shown that timbre could be partially described by
computing various acoustical descriptors of different sounds [19].
The long-term goal is to develop perceptually relevant descriptors
and distance models for measuring audio similarity. To do so,
most studies rely on the concept of timbre spaces [2], a model that
organize audio samples based on perceptual dissimilarity ratings.
Hence, in all these studies, the experimental protocol consisted in
presenting pairs of sounds to subjects that were asked to rate the
perceptual dissimilarity of all pairs of samples inside a given set of
instruments. Then, these ratings are compiled into a set of dissim-
ilarity matrices that are analyzed with Multi-Dimensional Scaling
(MDS). The MDS algorithm allows to obtain a timbre space that

exhibit the underlying perceptual distances between different in-
struments (Figure 1 (Right)). Here, we briefly detail studies that
will be later used and redirect interested readers to the full articles
for more details on experimental results.
In his seminal paper, Grey [9] performed a study with 16 instru-
mental sound samples. Each of the 22 subjects had to rate the dis-
similarity between all pairs of sounds on a continuous scale from
0 (most similar) to 1 (most dissimilar). This lead to the first con-
struction of a timbre space for instrumental sounds. They further
exhibit that the dimensions explaining these dissimilarities could
be correlated to the spectral centroid, spectral flux and attack cen-
troid. Several studies followed this research by using the same
experimental paradigm. Krumhansl [10] used 21 FM-synthesized
orchestral sample instruments with 9 subjects on a discrete scale
from 1 to 9, Iverson et al. [11] with 16 samples and 10 subjects
on a continuous scale from 0 to 1, McAdams et al. [12] with 18
orchestral instruments simulations and 24 subjects on a discrete
scale from 1 to 16 and, finally, Lakatos [13] with 17 subjects on
various harmonic and percussive musical instrument samples on
a continuous scale from 0 to 1. Each of these studies shed light
on different aspects of audio perception, depending on the aspect
being scrutinized and the interpretation of the space by the exper-
imenters. However, all studies have led to different spaces with
different dimensions. The fact that different studies correlate to
different audio descriptors prevent a generalization of the acous-
tic cues that might correspond to timbre dimensions. Furthermore,
timbre spaces have been explored based on MDS to organize per-
ceptual ratings and correlate spectral descriptors [12]. Therefore,
these studies are inherently limited by the fact that

• ordination techniques (such as MDS) produce fixed spaces
that must be recomputed for any new data point

• these spaces are unable to generalize nor synthesize audio
data between instrumental points as they are not continuous

• interpretation is bounded to the a posteriori linear correla-
tion of audio descriptors to the dimensions rather than ana-
lyzing the topology of the space itself

As noted by McAdams et al. [1], critical problems in these
approaches are the lack of an objective distance model based on
perception and general dimensions for the interpretation of tim-
bral transformation and source identification. Here, we show that
relying on VAE models to learn unsupervised spaces, while regu-
larizing the topology of these spaces to fit given perceptual ratings
can allow to alleviate all of these limitations.

3. REGULARIZING LATENT SPACE TOPOLOGY

In this paper, we aim to construct a latent space that could both
analyze and synthesize audio content, while providing the under-
lying perceptual relationships between audio samples. To do so,
we show that we can influence the organization of the VAE latent
space z so that it follows the topology of a given target space T .
Here, we will rely on the MDS space constructed from perceptual
ratings as a target space T . However, it should be noted that this
idea could be applied to any given target space that provides a set
of metric properties on the elements analyzed by the VAE.

To further specify our problem, we consider a set of audio
samples, where each xi can be encoded in the latent space as zi
and have an equivalent in the target space Ti. In order to relate the
elements of the audio dataset to the perceptual space, we consider
that each sample is labeled with its instrumental class Ci, that has
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an equivalent in the timbre space. Therefore, we will match the
properties of the classes between the latent and target space (note
that we could use element-wise properties for finer control).

Here, we propose to regularize the learning by introducing the
perceptual similarities through an additive term R (z, T ). This
penalty imposes that the properties of the latent space z are similar
to that of the target space T . The optimization objective becomes

E
[

log pθ(x|z)
]
− βDKL

[
qφ(z|x) ‖ pθ(z)

]
+ αR

(
z, T

)
(8)

where α is an hyper-parameter that allows to control the influence
of the regularization. Hence, amongst two otherwise equal so-
lutions, the model is pushed to select the one that comply with
the penalty. In our case, we want the distances between instru-
ments to follow perceptual timbre distances. Therefore, we need
to minimize the differences between the set of distances in the
latent space Dz

i,j = D(zi, zj) and the distances in target space
DTi,j = D(Ti, Tj). Therefore, the regularization criterion will try
to minimize the overall differences between these sets of distances.
To compute these sets, we take inspiration from the t-Stochastic
Neighbor Embedding (t-SNE) algorithm [8]. Indeed, as their goal
is to map the distances from one (high-dimensional) space into
a target (low-dimensional) space, it is highly correlated to our
task. Hence, we compute the relationships in the high-dimensional
(latent) space z by using the conditional Gaussian density that i
would choose j as its neighbor, defined as

Dz
i,j =

exp
(
− ‖zi − zj‖2 /2σ2

i

)∑
k 6=i exp

(
− ‖zi − zk‖2 /2σ2

i

) (9)

where σi is the variance of the Gaussian centered on zi, that we
define as σi = 1/

√
2. Then, in order to relate the points in the

lower-dimensional (timbre) space T , we use a Student-t distribu-
tion to define the distances in this space as

DTi,j =

(
1 + ‖Ti − Tj‖2

)−1∑
k 6=l
(
1 + ‖Tk − Tl‖2

)−1 (10)

As explained in [8], the interest of using a Student t-distribution
is that it makes the representation of distances almost invariant to
changes in the scaling for distant points. Finally we rely on the
sum of KL divergences between the two distributions of distances
in different spaces to define our regularization criterion

R
(
z, T

)
=
∑
i

DKL
[
Dz
i ‖ DTi

]
=
∑
i

∑
j

Dz
i,j log

Dz
i,j

DTi,j

4. EXPERIMENTS

4.1. Datasets

Timbre studies. We rely on the perceptual dissimilarity ratings that
were collected across five independent timbre studies [9, 10, 11,
12, 13]. All datasets are detailed in corresponding articles and
more globally described in [1, 19]. As discussed earlier, even
though all studies follow the same experimental protocol, there
are some discrepancies in the choice of instruments, rating scales
and sound stimuli. However, here we aim to obtain a consistent
set of properties to define a common timbre space. Therefore, we
first processed dissimilarity ratings from different studies in order
to maximize the common information on timbre perception.
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Figure 2: Multi-dimensional scaling (MDS) of the combined and
normalized set of perceptual ratings from different studies.

First, we computed the maximal set of instruments for which
we had pairwise ratings for all pairs. To do so, we collated the
list of instruments from all studies and counted the co-occurences
of ratings, leading to a set of 11 instruments (Piano, Cello, Vio-
lin, Flute, Clarinet, Trombone, Horn, Oboe, Saxophone, Trumpet,
Tuba) with pairwise ratings. Then, as all studies were performed
on different scales, we first normalized the raw dissimilarity data
(keeping all instruments of that study) so that it maps to a common
scale from 0 to 1. We computed the MDS space for each study and
confirmed that the resulting spaces were still coherent with that of
the original papers. Finally, we extract the set of ratings that cor-
responds to our selected instruments. This leads to a total of 1217
subject ratings for all instruments, amounting to 11845 pairwise
ratings. Based on this set of ratings, we compute an MDS space
to ensure the consistency of our normalized perceptual space on
the selected set of instruments. The results of this analysis are dis-
played in Figure 2. We can see that even though the ratings come
from different studies with different stimuli and scaling methods,
the resulting space is very coherent, with the distances between in-
struments remaining coherent with the original perceptual studies.

Audio datasets. In order to learn the distribution of instrumen-
tal sounds directly from the audio signal, we rely on the Studio
On Line (SOL) database. We selected 2,200 samples to repre-
sent the 11 instruments for which we extracted perceptual ratings.
We normalized the range of notes used by taking the whole tes-
situra and dynamics available (to remove effects from the pitch
and loudness). All recordings were resampled to 22050 Hz for the
experiments. Then, as we intend to evaluate the effect of different
spectral distributions as input to our proposed model, we computed
several invertible transforms for each audio sample. First, we com-
pute the Short-Term Fourier Transform (STFT) with a Hamming
window of 40ms and a hop size of 10ms. Then, we compute the
Discrete Cosine Transform (DCT) with the same set of parameters.
Finally, we compute the Non-Stationary Gabor Transform (NSGT)
mapped either on a Constant-Q scale of 24 bins per octave and a
Mel scale or Erb scale of 168 bins, all from 64 to 8000 Hz. For all
transforms, we only keep the magnitude of the distribution to train
our models and perform a corpus-wide normalization to preserve
the relative intensities of the samples. Finally we extract a single
temporal frame from the sustained part of the representation to rep-
resent a given audio sample. Finally, the dataset is split between a
training (90%) and test (10%) set to validate our models.
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4.2. Models

Here, we rely on a simple VAE architecture to show the efficiency
of the proposed method. The encoder is defined as a 3-layer feed-
forward neural network with Rectified Linear Units (ReLU) acti-
vation functions and 2000 units per layer. The last layer maps to a
given dimensionality d of the latent space. In our experiments, we
analyzed the effect of relying on different latent spaces and em-
pirically selected latent spaces with 64 dimensions. The decoder
is defined in a symmetrical way, with the same architecture and
units, mapping back to the dimensionality of the input transform.
For learning the model, we use a value of β = 2, which is linearly
increased from 0 to its final value during the first 100 epochs (fol-
lowing the warmup procedure [16]). In order to train the model,
we rely on the ADAM [20] optimizer with an initial learning rate
of 0.0001. In a first stage, we train the model without perceptual
regularization (α = 0) for a total of 10000 epochs. Then, we intro-
duce the perceptual regularization (α = 0.1) and train for another
10000 epochs. This allows the model to first focus on the quality of
the reconstruction (with its own unsupervised regularization), and
then to converge towards a solution with perceptual space proper-
ties. We found in our experiments that this two-step procedure is
critical to the success of the regularization.

5. RESULTS

5.1. Latent spaces properties

In order to visualize the 64d latent spaces, we apply a simple Prin-
cipal Component Analysis (PCA) to obtain a 3d representation.
Using a PCA ensures that the visualization is a linear transform
of the original space. Therefore, this preserves the real distances
inside the latent space. Furthermore, this will allow to recover an
exploitable representation when we will use this space to gener-
ate novel audio content. The results of learning regularized latent
spaces for different spectral transforms are displayed in Figure 3.

As we can see, in VAEs without regularization (small space),
the relationships between instruments do not match perceptual rat-
ings. Furthermore, the variance of distributions show that the model
rather tries to spread the information across the latent space to
help the reconstruction. However, the NSGT provides a better un-
regularized space with different instrumental distributions already
well separated. Now, if we compare to the regularized spaces, we
can clearly see the effect of the criterion, which provides a larger
separation of distribution. This effect and final result is particu-
larly striking for the NSGT (c), which provides almost identical
relations as those coming from state-of-art timbre studies (Fig-
ure 2). Interestingly, the instrumental distributions might be shuf-
fled around space in order to comply with the reconstruction ob-
jective. However, the pairwise distances reflecting perceptual re-
lations are well matched as indicated by the KL divergence. By
looking at the test set reconstructions, we can see that enforcing
the perceptual topology to latent spaces do not impact the qual-
ity of audio reconstruction for the NSGT, where the reconstruction
provides an almost perfectly matching distribution. In the case
of the STFT, we can see that the model is impacted by the regu-
larization and mostly match the overall density of the distribution
rather than its exact peak information. Finally, it seems that the
DCT model diverged in terms of reconstruction, being unable to
reconstruct the distributions. However, we can see that the KL fit
to timbre distances is better than the STFT, indicating an overfit of

Method log p(x) ‖x− x̃‖2

Unregularized NSGT -2.3443 0.1593
STFT -1.9237 0.2412
DCT 4.3415 2.2629

NSGT-CQT -2.8723 0.1610
NSGT-MEL -2.9184 0.1602
NSGT-ERB -2.9212 0.1511

Table 1: Generative capabilities evaluated by the log likelihood
and mean quality of reconstructed representations on the test set.

the learning towards the regularization criterion. This generative
evaluation is quantified and confirmed in the next section.

5.2. Generative capabilities

We quantify the generative capabilities from the latent spaces by
computing the log likelihood and mean difference between the
original and reconstructed spectral representations on the test set.
We compare these results for different transforms and without reg-
ularization, which are presented in Table 1.

As we can see, the unregularized VAE trained on the NSGT
distribution provides a very good reconstruction capacity, and still
generalizes very well. This can be seen in its ability to gener-
ate spectral distributions from the test set almost perfectly. Inter-
estingly, regularizing the latent space does not seem to affect the
quality of the reconstruction at all. It even seems that the gener-
alization increases with the regularized latent space. This could
however be explained by the fact that the regularized models are
trained for twice as much epochs based on our two-fold procedure.

It clearly seems that NSGTs provide both better generalization
and reconstruction abilities, while the DCT seems to provide only
a divergent model. This can be explained by the fact that NSGT
frequency axis is organized on a logarithmic scale. Furthermore,
their distribution are well spread across this axis, whereas STFT
and DCT tends to have most of their informative dimensions in the
bottom half of the spectrum. Therefore, NSGTs provide a more
informative input. Finally, there only seems to be a marginal dif-
ference between the results of different NSGT scales. However,
for all remaining experiments, we select the NSGT-ERB as it is
more coherent with our perceptual endeavor.

Thanks to the decoder and its generative capabilities, we can
now directly synthesize the audio corresponding to any point in-
side the latent space, but also any paths between two given in-
struments. This allows to turn our analytical spaces into audio
synthesizers. Furthermore, as shown in Figure 5 (Bottom right),
synthesizing audio along these spaces lead to smooth evolution
of spectral distributions and perceptually continuous synthesis (as
discussed extensively in the next section). In order to perform sub-
jective evaluation of the audio reconstruction, generated samples
from the latent space are available on the supporting repository.

5.3. Generalizing perception, audio synthesis of timbre paths

Given that the encoder of our latent space is trained directly on
spectral distributions, it is able to analyze samples belonging to
new instruments that were not part of the original perceptual stud-
ies. Furthermore, as the learning is regularized by perceptual rat-
ings, we could hope that the resulting position would predict the
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Figure 4: (Top) Projecting new instruments inside the regularized
latent space allow to see their perceptual relations to others. (Bot-
tom right) We can generate any path between instruments in the
space and synthesize the corresponding perceptually-smooth audio
evolution. (Bottom, left) We define 6 equally-spaced projection
planes across the x axis and sample points on a 50x50 grid. We
reconstruct their audio distribution to compute their spectral cen-
troid and bandwidth. We compare the resulting descriptor space
topology for unregularized (left) and regularized (right) spaces.

perceptual relationships of this new instrument to the existing in-
struments. This could potentially feed further perceptual studies,
to refine timbre understanding. To evaluate this hypothesis, we ex-
tracted a set of Piccolo audio samples to evaluate their behavior in
latent space. We perform the same processing as for the training
dataset (Section 4.1) and encode these new samples in the latent
space to study the out-of-domain generalization capabilities of our
model. The results of this analysis are presented in Figure 5 (Top).

Here, we can see that new samples (represented by their cen-
troid for clarity) are encoded in a coherent position in the latent
space, as they group with their families, even though they were
never presented to the model during learning. However, obtain-
ing a definitive answer on the perceptual inference capabilities of
these spaces would require a complete perception experiment, that
we leave to future work. Now, as argued previously, one of the key
property of the latent spaces is that they are continuous. Therefore,
we could thrive on this property to truly understand what are the
perceptual relations between instruments based on the behavior of
spectral distributions between the points in the timbre space. To
exhibit this capability, we encode the position in the latent space
of a Piccolo sample playing an E5-f. Then, based on the position
of a French Horn playing an A4-ff, we perform a spherical interpo-
lation between these latent points to obtain the path between these
two instruments in latent space. We then sample and decode the
spectral distributions at 8 equally spaced positions along the path,
which are displayed in Figure 5 (Right). As we can see, the result-
ing audio distributions demonstrate a smooth evolution between
the timbral structures of both instruments. Furthermore, the re-
sulting interpolation is clearly more complex than a simple linear
change between one structure to the other. Hence, this approach
could be used to understand more deeply the timbre relationships
between instruments. Also, this provides a model able to perform
perceptually-relevant synthesis of novel timbres, while sharing the
properties of multiple instruments.

5.4. Topology of audio descriptors

Here, we analyze the topology of signal descriptors across the la-
tent space. As the space is continuous, we do so by sampling
uniformly the PCA space and then using the decoder to gener-
ate audio samples at a given point. Then, we compute the au-
dio descriptors of this sample. In order to provide a visualiza-
tion, we select 6 equally-distant planes across the x dimension, at
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{−.75,−.45,−.15, .15, .45, .75}, which define an uniform 50x50
grid between [−1, 1] on other dimensions. We compare the re-
sults between unregularized or regularized NSGT latent spaces in
Figure 5 (Bottom left) for the spectral centroid and spectral band-
width. Animations of continuous traversals of the latent space are
available on the supporting repository. As we can see, the audio
descriptors behave following overall non-linear patterns for both
unregularized and regularized latent spaces. However, they still
exhibit locally smooth properties. This shows that our model is
able to organize audio variations. In the case of unregularized
spaces, the organization of descriptors is spread out in a more
even fashion. The addition of perceptual ratings to regularize the
learning seems to require that this space is organized with a more
complex topology. This could be explained by the fact that in the
regularized case, the VAE only needs to find a configuration of the
distributions that maximizes their reconstruction. Oppositely, the
regularization requires that instrumental distances follow the per-
ceptual dissimilarity ratings, prompting the need for a more com-
plex relationship between descriptors. This might underline the
fact that linear correlations between MDS dimensions and audio
descriptors is insufficient to truly understand the dimensions re-
lated to timbre perception. However, the audio descriptors topol-
ogy overall still provide locally smooth evolutions. Finally, a very
interesting observation comes from the topology of the centroid.
Indeed, all perceptual studies underline its correlation to timbre
perception, which is partly confirmed by our model (by projecting
on the y axis). This tends to confirm the perceptual relevance of
our regularized latent spaces. However, this also shows that the
relation between centroid and timbre might not be linear.

5.5. Descriptor-based synthesis

As shown in the previous section, the audio descriptors are orga-
nized in a smooth locally linear way across the space. Further-
more, as discussed in Section 5.1, we have seen that the instru-
mental distributions should be organized across spaces depending
on relations that are now perceptually relevant. Based on these two
findings, we hypothesized that we could find paths inside these
spaces that could modify a given audio distribution to follow a
target descriptor, while remaining perceptually smooth. Hence,
we propose a simple method for perceptually-relevant descriptor-
based path synthesis presented in Algorithm 1.

Based on the latent space z (with corresponding encoder q and
decoder p) and a given origin spectrum x0, the goal of this algo-
rithm is to find the succession of spectral distributions that match
a given target evolution t ∈ RN for a descriptor d. First, we find
the position of the origin distribution in latent space z0 and eval-
uate its descriptor value d0 (lines 1-4). Then for each point i, we
compute the descriptor values Di in the neighborhood of the cur-
rent latent point (lines 6-10) by decoding their audio distributions.
Note that the the neighborhood is defined as the set of close latent
points, and its size directly defines the complexity of the optimiza-
tion. Then, we select the neighboring latent point zi that provides
the evolution of descriptor closest to the target evolution t[i] (lines
11-14). Finally, we obtain the spectral distribution S[i] by decod-
ing the latent position zi. The results of applying this algorithm to
a given instrumental distribution is presented in Figure 5.

Here, we start from the NSGT distribution of a Clarinet-Bb
playing a G#4 in fortissimo. We apply our algorithm twice from
the same origin point, either on a descending target shape for the
spectral centroid (top), or an ascending log shape for the spec-

Algorithm 1: Descriptor-based path synthesis
Data: space z, encoder qφ(z|x), decoder pθ(x|z)
Data: origin spectrum x0, target series t1..N , descriptor d
Result: spectral distrib. S ∈ RN×F

1 // Find origin position in latent space
2 z0 = qφ(x0)
3 // Evaluate origin descriptor
4 d0 = evaluate(x0, d)
5 for i ∈ [1, N ] do
6 // Latent 3-d neighborhood of current point
7 Ni = neighborhood(zi−1)
8 // Sample and evaluate descriptors
9 Xi = qφ(Ni)

10 Di = evaluate(Xi, d)
11 // Compute difference to target
12 ∆i = ‖(Di − di−1)− (t[i]− t[i− 1])‖2
13 // Find next latent point
14 zi = argmin(∆i)
15 // Decode distribution
16 S[i] = pθ(zi)

17 end

tral bandwidth (bottom). In both cases, we plot the synthesized
NSGT distributions at different points of the optimized path, and
the neighboring descriptor space. As we can see, the resulting
descriptor evolution closely match the input target in both cases.
Interestingly, the optimization of different target shapes on differ-
ent descriptors lead to widely different paths in the latent space.
However, the overall timbre structure of the original instrument
still seems to follow a smooth evolution. Here, we note that the al-
gorithm is quite rudimentary, and could benefit from more global
neighborhood information, as witnessed from the slightly erratic
local selection of latent points.

6. CONCLUSION

Here, we have shown that regularizing VAEs with perceptual rat-
ings provides timbre spaces that allow for high-level analysis and
synthesis directly from these spaces. The organization of these
perceptually-regularized latent spaces prove the flexibility of these
systems, and provides a latent space from which generation of
novel audio content is straightforward. These spaces allow to ex-
trapolate perceptual results on new sounds and instruments with-
out the need to collect new measurements. Finally, by analyzing
the behavior of audio descriptors across the latent space, we have
shown that even though they follow a non-linear evolution, they
still exhibit some locally smooth properties. Based on these, we
introduced a method for descriptor-based path synthesis that allow
to synthesize audio that match a target descriptor shape, while re-
taining the timbre structure of instruments. Future work on these
latent spaces would be to perform perceptual experiments to con-
firm their perceptual topology.
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